skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nakamura, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 25, 2026
  2. Differential carrier lifetime measurements were performed on c-plane InGaN/GaN single quantum well (QW) light-emitting diodes (LEDs) of different QW indium compositions as well as with and without doped barriers. Mg-doped p-type and Si-doped n-type barriers close to the QW were used to reduce the net internal electric field in the QW, thereby improving the electron–hole wavefunction overlap on the LEDs. LEDs with doped barriers show short lifetimes and low carrier densities in the active region compared to the reference LEDs. The recombination coefficients in the ABC model were estimated based on the carrier lifetime and quantum efficiency measurements. The improvement in the radiative coefficients in the LEDs with doped barriers coupled with the blueshift of the emission wavelengths indeed indicates an enhancement in wavefunction overlap and a reduction of quantum confined Stark effect as a result of the reduced internal electric field. However, doped barriers also introduce non-radiative recombination centers and thereby increase the Shockley–Read–Hall (SRH) coefficient, although the increment is less for LEDs with high indium composition QWs. As a result, at high indium composition (22%), LEDs with doped barriers outperform the reference LEDs even though the trend is reversed for LEDs with lower indium composition (13.5%). Despite the trade-off of higher SRH coefficients, doped barriers are shown to be effective in reducing the internal electric field and increasing the recombination coefficients. 
    more » « less
  3. Abstract Although many substorm‐related observations have been made, we still have limited insight into propagation of the plasma and field perturbations in Pi2 frequencies (∼7–25 mHz) in association with substorm aurora, particularly from the auroral source region in the inner magnetosphere to the ground. In this study, we present conjugate observations of a substorm brightening aurora using an all‐sky camera and an inner‐magnetospheric satellite Arase atL ∼ 5. A camera at Gakona (62.39°N, 214.78°E), Alaska, observed a substorm auroral brightening on 28 December 2018, and the footprint of the satellite was located just equatorward of the aurora. Around the timing of the auroral brightening, the satellite observed a series of quasi‐periodic variations in the electric and magnetic fields and in the energy flux of electrons and ions. We demonstrate that the diamagnetic variations of thermal pressure and medium‐energy ion energy flux in the inner magnetosphere show approximately one‐to‐one correspondence with the oscillations in luminosity of the substorm brightening aurora and high‐latitudinal Pi2 pulsations on the ground. We also found their anti‐correlation with low‐energy electrons. Cavity‐type Pi2 pulsations were observed at mid‐ and low‐latitudinal stations. Based on these observations, we suggest that a wave phenomenon in the substorm auroral source region, like ballooning type instability, play an important role in the development of substorm and related auroral brightening and high‐latitude Pi2, and that the variation of the auroral luminosity was directly driven by keV electrons which were modulated by Alfven waves in the inner magnetosphere. 
    more » « less
  4. We theoretically and experimentally investigate Tamm plasmon (TP) modes in a metal/semiconductor distributed Bragg reflector (DBR) interface. A thin Ag (silver) layer with a thickness (55 nm from simulation) that is optimized to guarantee a low reflectivity at the resonance was deposited on nanoporous GaN DBRs fabricated using electrochemical (EC) etching on freestanding semipolar (20 21 ¯<#comment/> ) GaN substrates. The reflectivity spectra of the DBRs are compared before and after the Ag deposition and with that of a blanket Ag layer deposited on GaN. The experimental results indicate the presence of a TP mode at ∼ 454 nm on the structure after the Ag deposition, which is also supported by theoretical calculations using a transfer-matrix algorithm. The results from mode dispersion with energy-momentum reflectance spectroscopy measurements also support the presence of a TP mode at the metal-nanoporous GaN DBR interface. An active medium can also be accommodated within the mode for optoelectronics and photonics. Moreover, the simulation results predict a sensitivity of the TP mode wavelength to the ambient (∼ 4-7 nm shift when changing the ambient within the pores from air withn = 1 to isopropanoln = 1.3), suggesting an application of the nanoporous GaN-based TP structure for optical sensing. 
    more » « less